

CONTENTS

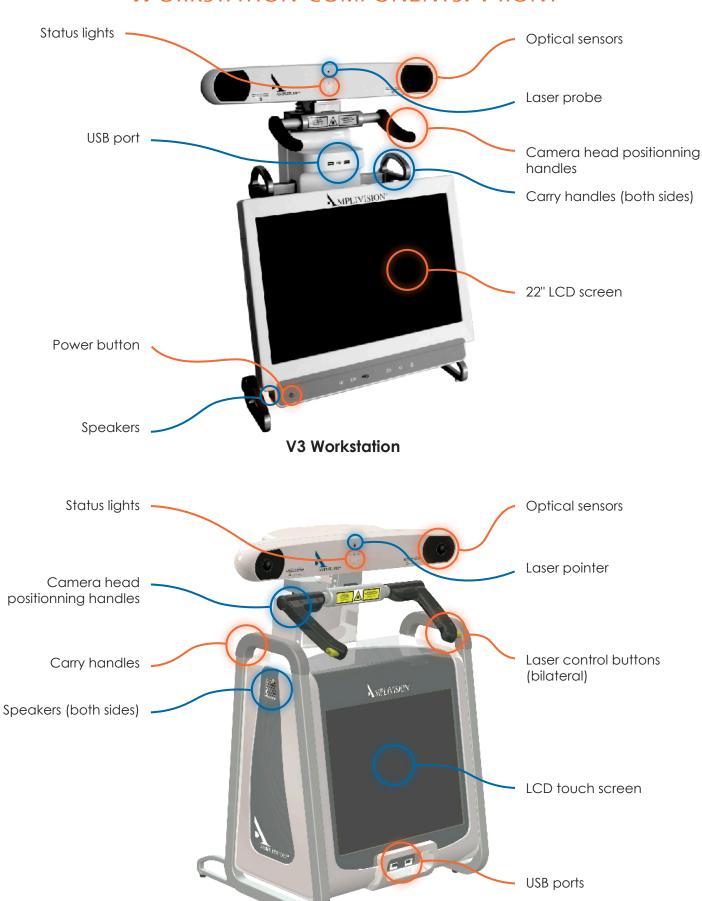
Workstation components:	Front	5
Workstation components:	Rear	6
Workstation setup		7
Surgical Technique summ	ary	8
•	ware	
· ·	urgery-related options	
	S	
)	
	robe	
Patient anatomy acquisiti	on	19
	centre	
> Acquiring the ac	etabular rim - if protocol selected	22
Implants navigation		23
	on - if protocol selected	
•	tion	
> Acetabular cup r	navigation - if protocol selected	27
> Acetabular comp	oonent acquisition - if protocol NOT selected	28
> Broach reference	9	29
> Broach navigatio	n	30
> Validation with tri	al implants	32
> Stem impaction		
> Stem navigation .		35
> Inserting the chos	sen implants	36
> Installing the fem	oral head	37
> On-stem validation	on	38
> Saving the surger	y report	38
Appendixes		39
> Appendix A: Unp	acking the workstation	40
> Appendix B: Storii	ng the workstation	41
> Appendix C: Scre	en layout	42
	ions Menu	
	profile	
	ning a saved surgery report	
> Appendix G: Cho	anging the cup model	47
Instrumentation		50

AMPLIVISION® is a surgical aid that allows the surgeon to view data in real time during the surgery. The software also simulates the postoperative outcome based on the real time data, each step of the way.

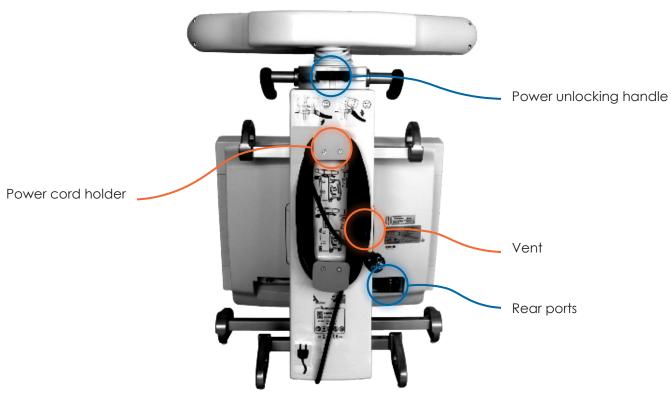
For total hip arthroplasty, it assists the surgeon in:

- Preserving leg length
- Optimising offset
- Determining the joint centre
- Viewing and resolving implant impingement during mobility testing

AMPLIVISION® is designed to be used with various surgical techniques:


- The simulated outcome is independent of the surgical approach
- Two protocols are available for hip surgery:
 - > A "Standard" protocol that guides the surgeon through all the surgery steps
 - > A "Fast" protocol that provides the key surgery data (height / offset / impingement) more quickly

This surgical technique document corresponds to the Fast protocol.


Information about most of Amplitude's implants is already integrated into AMPLIVISION®. Implant-specific instrumentation is available for each procedure.

Workstation components: Front

Workstation components: Rear

V3 Workstation

WORKSTATION SETUP

Place the workstation on a stable table or operating room cart. Refer to Appendix A for how to unpack the workstation from its shipping trunk.

Clean the workstation according to the instructions in the user manual or "Options menu".

Connect the pedal to the back of the V2 Workstation or to the side of the V3 Workstation and slide it into its protective cover (found in the trunk).

Plug in the workstation's power cord.

Position the workstation near the patient.

IMPORTANT

The workstation must be at least 1.5 m from the patient.

Set the camera head in the neutral position (maximum height, no rotation).

Unlock the adjustable tower: press on the locking lever and let the tower rise freely until it reaches its maximum height.

Turn the power on:

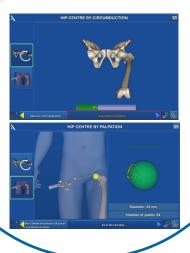
- > V2 Workstation: move green button on rear of workstation set it to the "I" position.
- > V3 Workstation: Press power button at lower left portion of screen; it will turn green when the power is on.

Surgical technique summary

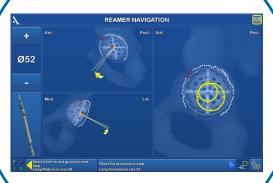
Patient data and surgical preferences

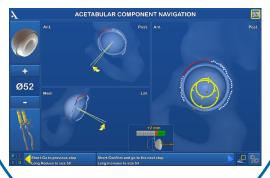
SURGERY INFORMATION
SURGERY

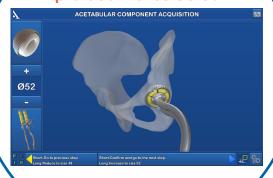
Camera setup and calibration


Placing the arrays and probe calibration

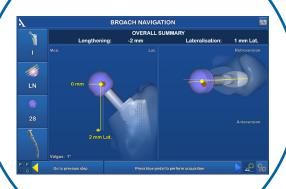
5 Transfer position


Acquiring the hip center

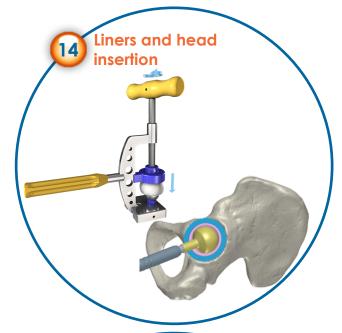

SURGICAL TECHNIQUE SUMMARY


Reamer navigation - if protocol selected

Acetabular cup
navigation - if protocol
selected


Acetabular cup acquisition - if protocol not selected

10 Broach reference


Broach navigation

SURGICAL TECHNIQUE SUMMARY

LAUCHING THE SOFTWARE

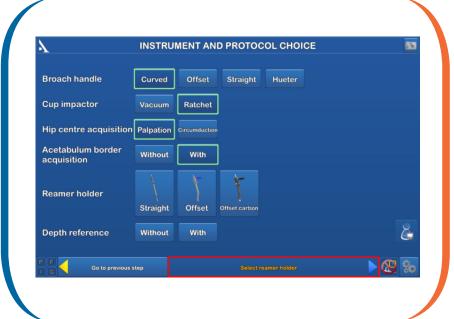
Use the touch screen to select the desired cup and femoral stem.

Use the virtual keyboard to enter the following information:

- Surgeon name
- Patient name
- Patient's date of birth (optional)
- Operated side (select RIGHT or LEFT)

To go to the next step, press the blue pedal or the blue arrow on the screen.

To go back to the welcome screen, press the yellow pedal or yellow arrow on the screen.


REMINDER

The purpose of this surgical technique is to provide instructions on how to use the instrumentation properly. The surgeon is fully responsible for choosing and performing the approach and surgical technique

NOTE

The Fast version of the surgical technique follows the acetabulum/femur sequence only.

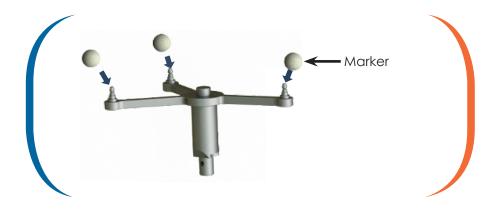
CONFIGURING THE SURGERY-RELATED OPTIONS

On the screen, select the surgical technique and the instrumentation used for the surgery:

- Broach handle: Straight, Offset, Curved, Hueter Straight
- Cup impactor: depends on chosen cup (see below)
- Hip centre acquisition: palpation of points on femoral head or circumduction movement
- Acetabulum acquisition protocol

- If the acetabulum acquisition protocol is selected:
- Type of reamer holder used: Straight, Metal Offset or Carbon Offset (depending on instruments available in the operating suite)
- Depth reference: show or hide the reamer depth indicator during the cup navigation step

The preferences can be saved to the user profile for future surgical procedures (see Appendix F). To go to the next step, press the blue pedal or the blue arrow on the screen.

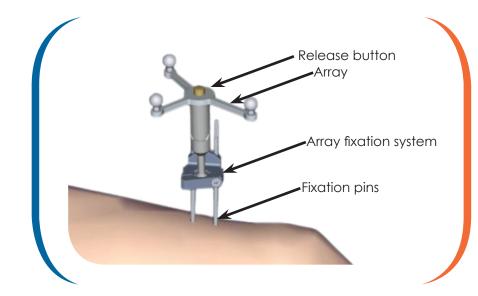

IMPORTANT

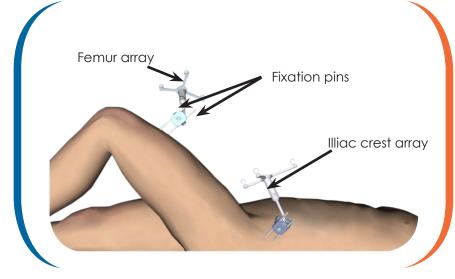
Since the software will automatically determine during the acetabular cup navigation set whether the straight or curved ratchet cup holder is being used; this selection does not need to be set in the surgery options. Thus, a straight reamer holder can be selected, and an offset cup holder can be used or vice versa.

IMPORTANT

The acetabular rim acquisition step is optional. If this option is not selected, the reamer navigation and cup navigation steps are not needed.

PLACING THE ARRAYS


Clip the round markers to the arrays:

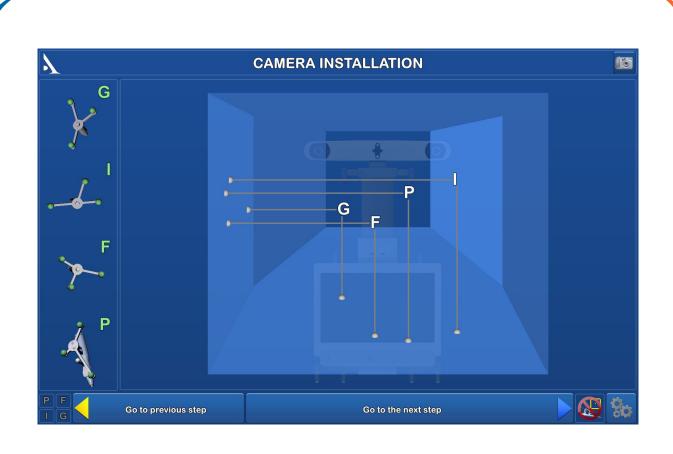

- 3 for the I (iliac crest) array,
- 3 for the F (femur) array,
- 4 for the P (probe) array,
- 3 for the G (guide) array.

Put the two fixation pins in the iliac crest and install the array fixation system (preferably the straight version):

- Insert the first pin, making sure it crosses the 1st cortex so the pin is stable.
- Place the array fixation support onto the first pin to get the proper spacing for the second pin.

Clip the I array on the moveable part of the support, making sure the arrows are aligned correctly. If the array needs to be removed during the procedure, it can be returned to the same position on the support.

Orient the array towards the camera head and lock the fixation support.


Insert two fixation pins on the lateral side of the femoral shaft: go through the 1st cortex and then into, but not through, the 2nd cortex. Place the fixation support (preferably the curved version) onto these pins.

Clip the Farray on the moveable part of the support.

Orient and secure the F array so that it is always visible to the camera whether the hip is dislocated or reduced.

Workstation setup

SETTING UP THE CAMERA

Position the camera head so the letters corresponding to the F and I arrays are in the middle of the field of view.

The laser located in the positioning handles on the camera head (V2 Workstation) or between the two optical sensors (V3 Workstation) makes this adjustment easier.

Confirm that the P array is visible.

On the left side of the screen, a 3D view of the arrays indicates why an array may not be visible:

- If a marker is not visible on an array, this marker will be red, as will the letter associated with this array.
- The array will be green if it is fully visible.

The array's visibility may be compromised by interfering infrared sources (sunlight, hot lights, dirty markers).

WORKSTATION SETUP

SCREEN CALIBRATION

Aim the probe at the centre of the AMPLIVISION $^{\tiny{(0)}}$ screen and press the trigger to confirm.

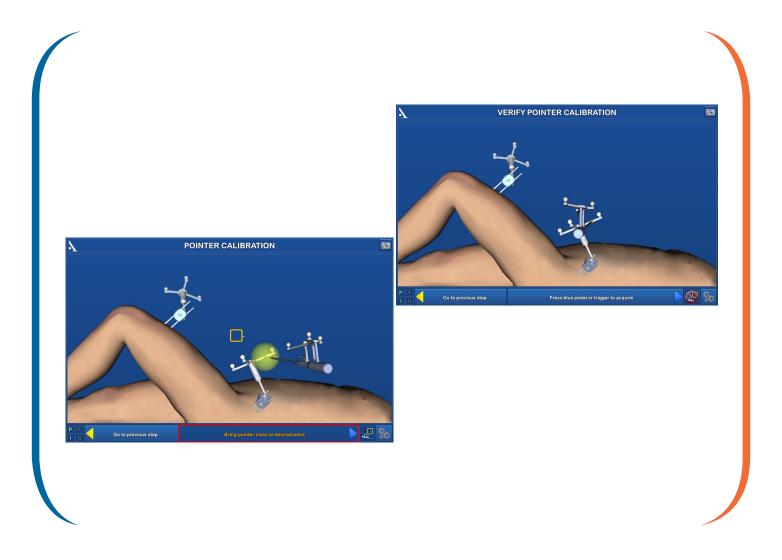
From this step on, the AMPLIVISION® system can be controlled with:

- the probe, by pressing the trigger to confirm
- the pedal,
- the touchscreen of the AMPLIVISION® workstation.

The system will capture screenshots when:

- the user validates a step,
- the user presses the screen capture button at the upper-right corner of the screen.

IMPORTANT


The user must make sure the arrays used in this step are fully visible.

These steps can be saved to a USB drive at the end of the procedure.

To recalibrate the camera position at any time:

- Press the «Options» button
- Press the «Calibrate AMPLIVISION® workstation position» button
- Validate the new position; the system will automatically return to the current surgical step

CALIBRATING THE PROBE

To define the exact position of the probe's tip:

- Calibrate the probe by placing its tip in the conical calibration mark on one arm of the I array and press the trigger to confirm.
- Without lifting the probe tip, change the probe's orientation slightly and then confirm again.

TRANSFER POSITION

Set the femur's position relative to the pelvis so that it simulates the patient's standing position (transfer position).

Flexion: 0°Rotation: 0°Adduction: 0°

Press the blue pedal to validate this position.

ACQUIRING THE HIP CENTRE

METHOD 1: USING A CIRCUMDUCTION MOVEMENT OF THE PATIENT'S LEG

Extend the patient's leg and grasp his/her ankle.

Press the blue arrow (or blue pedal) to start the data acquisition.

Move the leg in a small circle (15 cm knee displacement)

until the system has acquired 100% of the points it needs.

Once the acquisition is finished, the system will calculate the hip centre. If the result is acceptable, the system will automatically go to the next step. If it is not acceptable, the system will prompt the user to restart the acquisition.

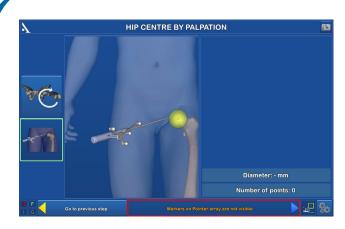
During this step, the system will beep once when the acquisition starts and once when it ends. A status bar shows the progress being made during the acquisition.

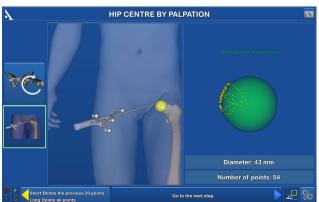
Open the joint and cut the femoral neck.

Acquiring the hip centre

METHOD 2: BY ACQUIRING POINTS ON THE FEMORAL HEAD

After opening the joint, remove any peripheral osteophytes and resect the joint capsule.


- > If the femoral head is being dislocated AFTER the femoral neck is cut:
- > If the femoral head is being dislocated BEFORE the femoral neck is cut:

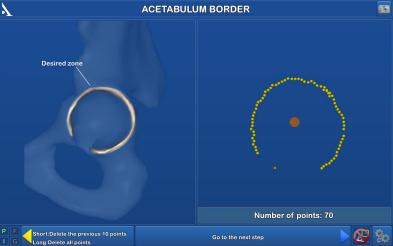

Rotate the femur to expose as much of its surface area Dislocate the femoral head. as possible.

Place the probe's tip on the femoral head and press the trigger to start acquiring points. Points should be acquired in non-damaged areas of the femoral head.

Stop acquiring points when the femoral head diameter shown on the screen no longer changes. Press the blue pedal to save the data and go to the next step.

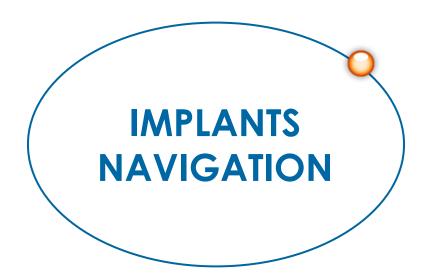
Cut the femoral neck (if points were acquired before the femoral neck cut).

NOTE

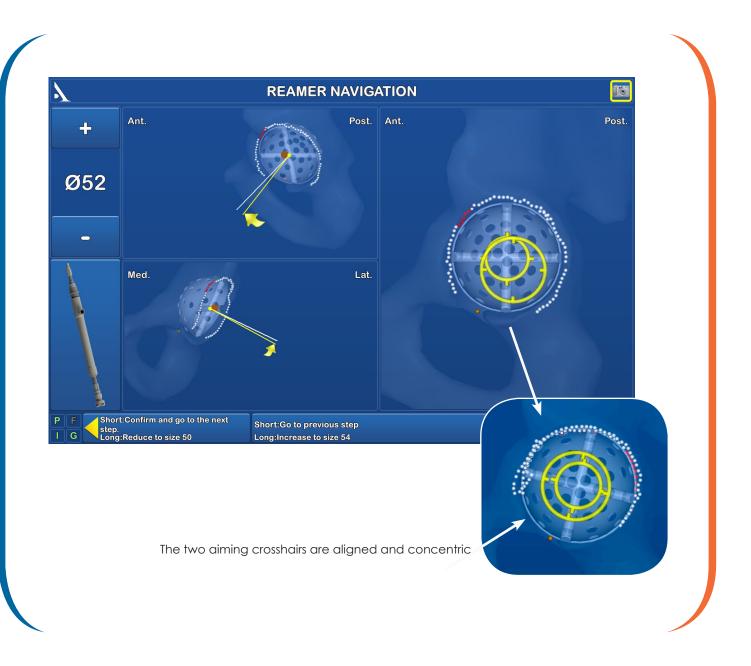

The acquisition of points can be interrupted by releasing the trigger; press the trigger again to restart the acquisition. It is preferable to acquire points with the probe in many different orientations so that the femur shape on the screen is as close as possible to the true shape. A minimum of 15 digitised points is needed to complete this step.

Use the buttons on the left side of the screen to change from one mode to the other.

Acquiring the acetabular rim — if protocol selected


Remove any peripheral osteophytes and resect the joint capsule.

Acquire the following points using the probe:


- Apex of the obturator foramen
- Rim of acetabulum, while continually pressing the trigger It is best to acquire these points on the medial side.

These points will be used as a reference to compare the position of the reamer edge or the cup relative to the acetabulum during the reamer navigation and cup navigation steps.

If the depth reference will be used in the protocol, one point must be acquired on the quadrilateral plate in the axis of the acetabulum.

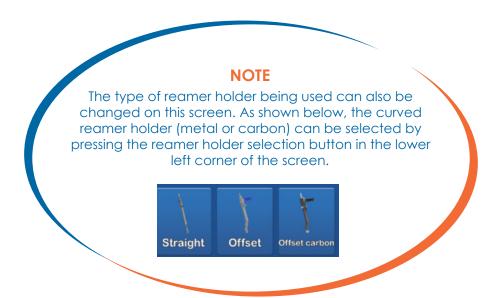
REAMER NAVIGATION - IF PROTOCOL SELECTED

Start reaming with the smallest available reamer.

Set the reamer diameter on the screen.

- > By using the probe or touch screen, press the «+» button to select a larger reamer and the «-» button to select a smaller reamer.
- > By a long press of the pedals blue pedal for larger diameter, yellow pedal for smaller diameter (until there is an audible beep)

Make sure to change the reamer diameter on the screen when a new reamer is used.


The reamer holder's orientation is shown on the screen during reaming: the white line corresponds to the acetabulum and the yellow line to the reamer.

Make sure the two lines shown on the left side of the screen are aligned or make sure the two cross-hairs on the right side of the screen are concentric.

The points will be red when the reamer's edge goes beyond the acquired acetabular rim. The points will be white when the reamer is below the acetabular rim.

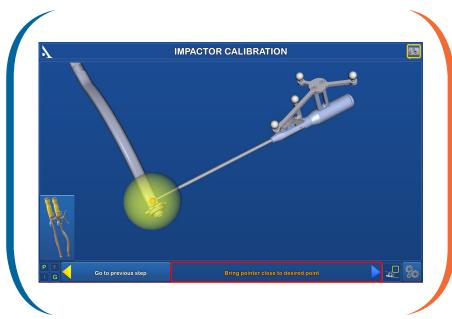
Once reaming is completed, confirm the reamer holder's final position by pressing on the blue pedal.

If navigation is used with only one reamer (e.g. the last one), make sure the diameter shown on the screen is the same as the diameter of the reamer before confirming this step.

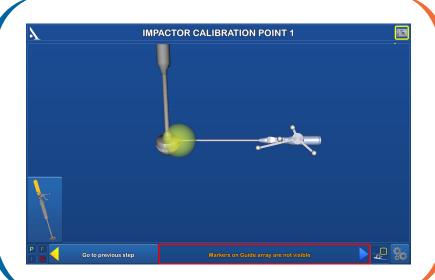
MPACTOR CALIBRATION

Depending on the cup being used, the impactor may need to be calibrated.

Place the G array on the chosen impactor.


RATCHET IMPACTOR

To acquire the position of the cup impactor, place the probe tip in the conical calibration mark on the tip of the straight or curved impactor.



VACUUM CUP INSERTER

To acquire the position of the vacuum cup inserter, place the probe tip in the conical calibration mark on the inserter's tip, following the instructions on the screen.

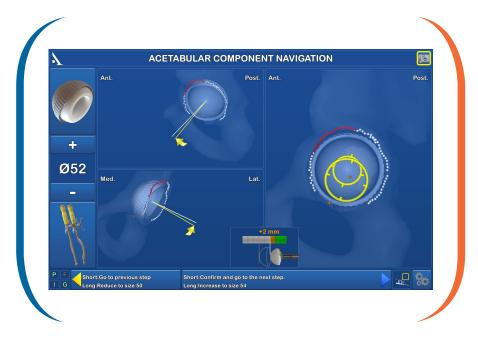
The calibration is used to estimate the size of the chosen cup.

NOTE

The type of impactor can be changed during this step by pressing the button in the lower left corner of the screen.

The new impactor will need to be calibrated before it is used.

The buttons on the left side of the screen can be used to switch between modes


Only the impactors described above need to be calibrated. The **EQUATEUR®** and **HORIZON® II with holes** impactors do not need to be calibrated.

ACETABULAR CUP NAVIGATION - IF PROTOCOL SELECTED

Hold the cup as described in the surgical technique documents specific to the implant and type of impactor being used.

Position the impactor in the acetabulum by either aligning the two lines shown on the left side of the screen or making sure the two cross-hairs on the right side of the screen are concentric. The positioning landmarks are the same as the ones used during the reaming step.

If navigation was used during reaming, the software displays the cup diameter that corresponds to that of the navigated reamer. If navigation was not used during reaming, make sure the correct diameter is shown on the screen, because the software defaults to the smallest size.

Impact the chosen cup while keeping track of the points palpated on the acetabular rim. The points will be red if the cup's edge goes beyond the acquired acetabular rim. The points will be white when the cup is below the acetabular rim.

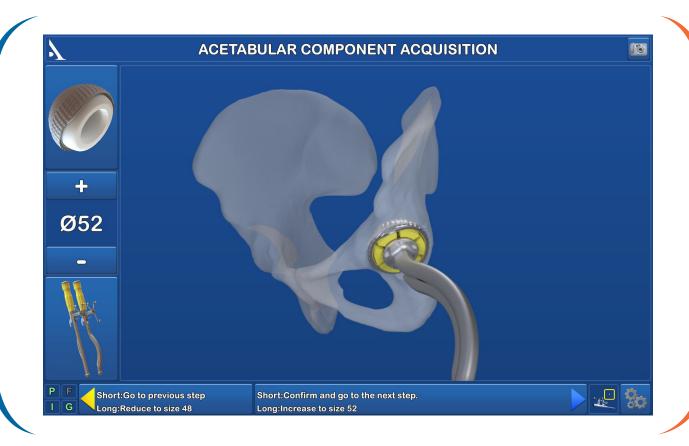
If the depth reference will be used during the protocol, the distance between the reference point and acetabulum can be viewed during impaction; this allows the surgeon to make sure that the cup is properly seated in bone.

Confirm its position.

For the SATURNE® cup, finish impacting it using the dual mobility cup final impactor. Remove the impactor in a manner suited to the model used:

> lift the blue button for ratchet impactors,

> unscrew the vacuum cup inserter or the straight and offset impactors


NOTE

The type of impactor can be changed during this step by pressing the button in the lower left corner of the screen.

The new impactor may need to be calibrated before it is used, depending on the model.

To use a different cup, press the button that corresponds to the cup being navigated. Depending on which cup is chosen, the software may ask you to recalibrate the impactor.

ACETABULAR CUP ACQUISITION — IF PROTOCOL NOT SELECTED

After the mechanical reaming and cup impaction have been done, hold the impactor in the cup and then select its size using the probe, pedal or touch screen.

If you decide that a different impactor is needed before impaction, press on the impactor button at the lower-left corner of the screen. The software will return to the calibration step.

Once the actual size has been recorded, validate the cup's position by pressing the blue pedal.

For the SATURNE® cup, finish impacting it using the dual mobility cup final impactor. Remove the impactor in a manner suited to the model used:

> lift the blue button for ratchet impactors,

> unscrew the vacuum cup inserter or the straight and offset impactors

NOTE

To use a different cup, press the button that corresponds to the cup being navigated. Depending on which cup is chosen, the software may ask you to recalibrate the impactor.

Broach reference

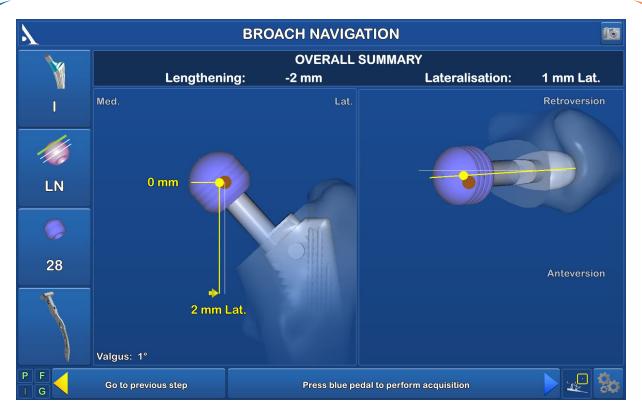
Open the medullary canal.

Assemble the smallest femoral broach with the broach handle (model chosen at start of procedure) then place the G array on the handle.

Push the broach down in the femur's axis.

IMPORTANT

During this step, the acquisition can be validated using either the first or last broach.


Leave the last broach used in the femur and confirm the broach's position by pressing the blue pedal to go to the next step.

If the broach size has been confirmed, disassemble the broach handle.

IMPORTANT

The type of broach handle can be changed at any time by pressing the button in the lower-left corner of the screen.

Broach Navigation

Navigation screen described in Appendix C

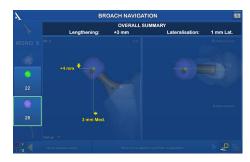
If the broach size has not been validated (broach reference acquired with smallest size), push successively larger broaches down into the femoral canal until good metaphyseal filling has been achieved (broach is stable).

As you push the **broach into the femoral shaft**, check the position of the replacement joint centre on the screen (relative to patient's anatomy):

- · Height,
- Medialisation/lateralisation,
- Anteversion/retroversion.

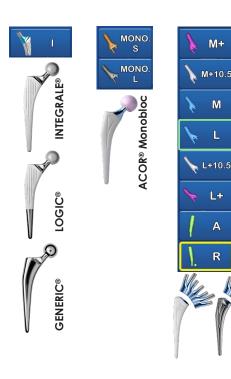

The values shown are based on the type of stem/neck chosen, the femoral head diameter and length displayed on the screen.

When the optimal broach size has been reached, leave the broach (and the broach handle) in the femur and adjust the extramedullary portion. The impaction depth is represented by the junction between the broach handle and the broach; make sure this junction is visible when the last broach is inserted. Also make sure that the broach fills the femur and cannot rotate.


The summary shows the overall leg lengthening and lateralisation / medialisation, meaning that both the position of the acetabular cup **AND** femoral stem are taken into account.

Broach navigation (continued)

To modify the simulated joint centre position, use the probe to alter the parameters on the left side of the screen. When one parameter is selected, the background darkens, and the various available settings will appear. When one of the options is highlighted, the overall summary is updated in real time. The following parameters can be adjusted:



BROACH NAVIGATION Lengthening: OVERALL SUMMARY 0 mm Lateralisation: 1 mm Med. Address Lose SN Address Lose Page 1 mm Med. Page 2 mm Med. Address Lose Page 3 mm Med. Page 3 mm Med. Address Lose Page 3 mm Med.

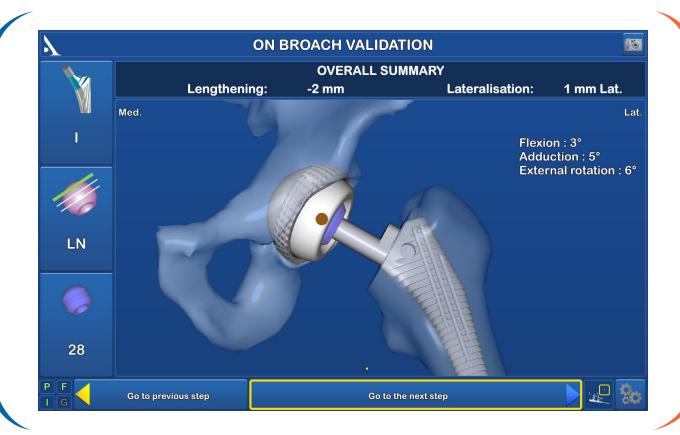
Stem neck

Choose between neck for monoblock stem and various modular necks.

Femoral head diameter

Select desired diameter from those available for the current cup

Neck length

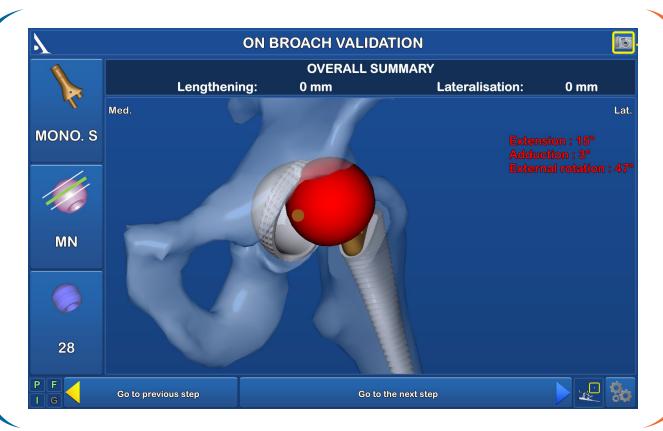

Select short (SN), medium (MN) or long (LN) depending on the femoral head diameter selected.

Attention: see limitations on modular neck combinations in the following pages

Once the desired joint centre position has been achieved, confirm the broach's position by pressing the blue pedal, then detach the broach handle, but leave the broach in the femur.

Validation with trial implants

Insert the trial liner, the trial neck, and the trial head of the diameter and length chosen during the broach navigation step; the selections are shown on the left side of the screen.


Reduce the joint using the head impactor mounted on the universal handle.

Test the range of motion and joint stability and then check the length to validate the extramedullary settings.

Keep track of the following parameters on the screen:

- diameter and length of the trial femoral head,
- position of leg during extension, abduction and external rotation,
- diameter of acetabular cup,
- overall joint data: lengthening or shortening of leg; medialisation or lateralisation of hip centre.

Validation with trial implants (continued)

If needed, use a different trial neck or change the diameter and/or length of the trial femoral head. Make sure these changes are reflected in the parameters on the screen.

Repeat the trials until the trial head and neck combination providing the best stability and range of motion are found.

If dislocation occurs, the red-coloured head will be outside the acetabular cup. The system will beep and the numbers describing the disassembled position will become red.

For stems with a modular neck, please consult the following table for acceptable neck/head combinations:

		Femoral heads				
		Short neck	Medium neck	Long neck	Extra long neck	
L/M neck	Lateralised and medialised versions	√	√		X	
Ante/ retro neck	Anteverted and retroverted versions	√	√	√	√	
L/M+ neck	Lateralised version	Maximum patient weight 90kg	Maximum patient weight 90kg	Maximum patient weight 90kg	X	
	Medialised version				X	
L/M+10.5 neck	Lateralised and medialised versions	Maximum patient weight 90kg	Maximum patient weight 90kg	X	X	

STEM IMPACTION

Once all the parameters have been validated, confirm this step and extract the broach from the femur using the broach handle, along with the trial liner. Keep the chosen broach, trial neck and trial femoral head on the table to serve as a reference for the final implanted components.

With a monoblock stem:

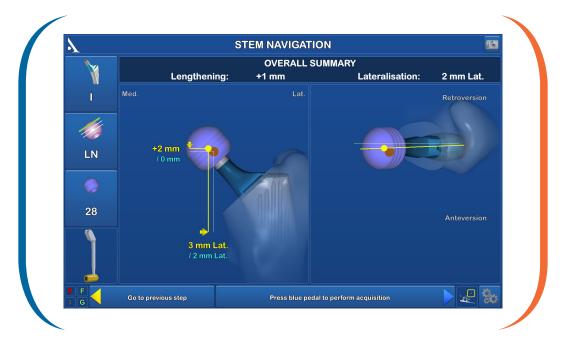
Select the G array femoral stem support that matches the patient's position (supine or lateral decubitus) and operated side, and then clip the support onto the taper of the chosen femoral stem. You must hear a "clip".

Assemble the G array with the selected support.

With a modular stem:

Select the G modular femoral stem support that matches the approach used and operated side and screw it into the hole in the stem using the round tip mounted on the universal handle.

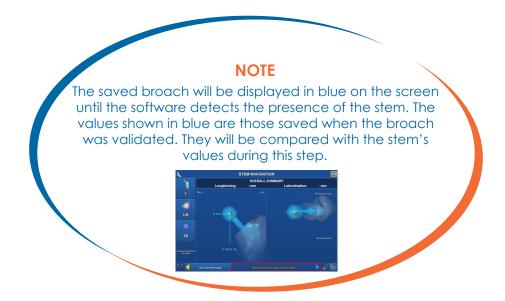
Assemble the G array with the G modular stem support.

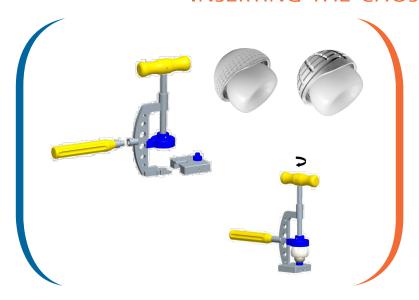

Place the stem corresponding to the size selected during the trials into the femur. Do not touch the head impaction area.

Insert the stem impactor in the impaction hole on top of the stem being implanted.

Impact the stem until the HA limit corresponding to the appropriate depth is reached.

For a modular stem, impact the modular neck using the head-neck impactor mounted on the universal handle. The impactor has a cavity where the proximal part of the modular neck is inserted. Three hard strikes with a 300g hammer are recommended for the impaction.


STEM NAVIGATION


Keep track of the progress of the femoral stem impaction on the screen. It is shown relative to the centre of the native femoral head (red point):

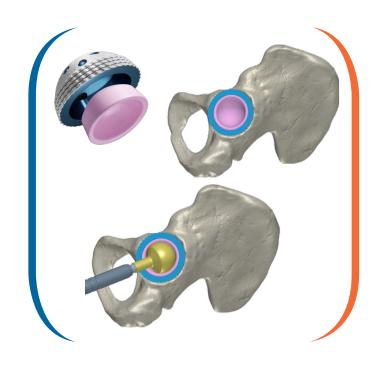
- The height value shown in yellow is the distance between the centre of the native femoral head and the centre of the prosthetic femoral head on the implanted stem. The blue numbers below it are those obtained during broach validation.
- The lateralisation/medialisation value shown in yellow is the distance between the centre of the native femoral head and the centre of the prosthetic femoral head on the implanted stem. The blue number below it is the distance between the centre of the native femoral head and the centre of the prosthetic femoral head on the broach
- The anteversion of the native femoral head on the broach and the implanted stem are shown on the right side of the screen. This is the difference between the anteversion of the head centre on the stem and the native head centre.

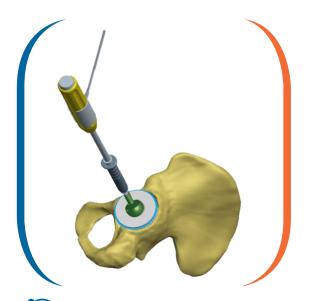
Review the overall navigation data at the top of the screen and change the available parameters as needed. Once all the parameters have been validated, confirm the step and remove the array from the stem.

INSERTING THE CHOSEN IMPLANTS

Secure the handle and the baseplate in the dual mobility cup press.

Place the chosen femoral head on the baseplate.


Place the liner on the head and turn the T-handle on the press until the liner's retaining mechanism has been cleared. Once beyond the retaining threshold, turn the T-handle one or two more times to eliminate any air caught between the head and liner.


Make sure the head can move within the liner.

After cleaning and drying out the implanted cup, slide the chosen BIOLOX® delta ceramic liner along the cup's Morse taper.

Check the liner positioning by running your finger along the cup's edge; the combined edges of the metal cup and ceramic liner must be completely flat.

Place the cup impactor tip (blue for liner with 28 mm head, yellow for liner with 32 mm head and grey for liner with 36 mm head) on the universal handle and impact the liner.

Assemble the liner impactor or impactor for hooded liner with the universal handle.

Place the chosen liner on the liner impactor; hold it in place and screw in the universal handle as far as it will go. Make sure the liner is securely connected to the impactor.

Impact the liner in the cup. Loosen the universal handle before removing the entire instrument from the cup. Finalise the impaction with the final cup impaction tip.

AMPLIVISION[®] COMPUTER ASSISTED SURGERY

NSTALLING THE FEMORAL HEAD

METAL HEAD

Make sure the taper is clean, dry and undamaged.

Use the head and neck impactor mounted on the universal handle to impact the head.

CERAMIC HEAD

Before attaching a ceramic head to the femoral stem:

- Carefully rinse and dry the stem's taper;
- Meticulously inspect the stem's taper and the female head taper and remove any foreign bodies.

Manually place the head on the stem taper by gently turning it while pushing it along the taper axis until it is firmly seated.

To finalise the fixation of the head onto the neck taper, use the head impactor and give it a slight hammer tap along the axis.

HELPFUL HINT

When implanting a ceramic head with a dual mobility cup, **partially** impact the head into the liner so that it can still turn when inserting it on the stem's taper. The head's impaction in the liner will be finalised when it is impacted on the taper.

Reduce it using the liner impactor tip and the universal handle, making sure there are no foreign bodies between the head and liner, or between the liner and cup if using a dual mobility cup.

ON-STEM VALIDATION

Test the joint's stability and range of motion.

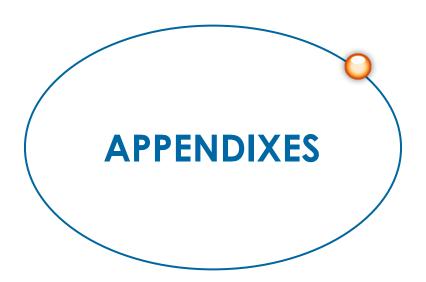
Keep track of the following parameters on the screen:

- · Head diameter,
- position of leg during extension, abduction and external rotation,
- diameter of acetabular cup,
- overall joint data: lengthening/shortening and medialisation /lateralisation of leg

SAVING THE SURGERY REPORT

Press the button to exit the application

- > it will be visible immediately after the last step of the «Validation with stem» procedure,
- > Or it can be found on the «Options» page at any point during the procedure.


The message «Do you really want to exit?» will appear. Press "Yes" to confirm.

The message «Copy report to USB drive?» will appear.

Indicate whether you want to create a backup copy of the surgery report by pressing the «Yes» or «No» button.

A message will appear asking you to insert a USB drive. Insert the USB drive in the slot near the screen (see V2 and V3 workstation descriptions for slot locations) and confirm that you want to save the report.

If necessary, perform implant removal as described in the surgical technique specific to that implant.

APPENDIX A

Unpacking the workstation

Shipping trunk for V2 Workstation

Shipping trunk for V3 Workstation

Pedals for V2 Workstation

Pedals for V3 Workstation

To unpack the Workstation, unlock the four latches on the shipping trunk. Open the front panel and take out the workstation, pedal and pedal cover.

APPENDIX B

STORING THE WORKSTATION

Press the **b**utton at the lower right corner of the screen.

Confirm that you want to shut down the system. The system will shut down.

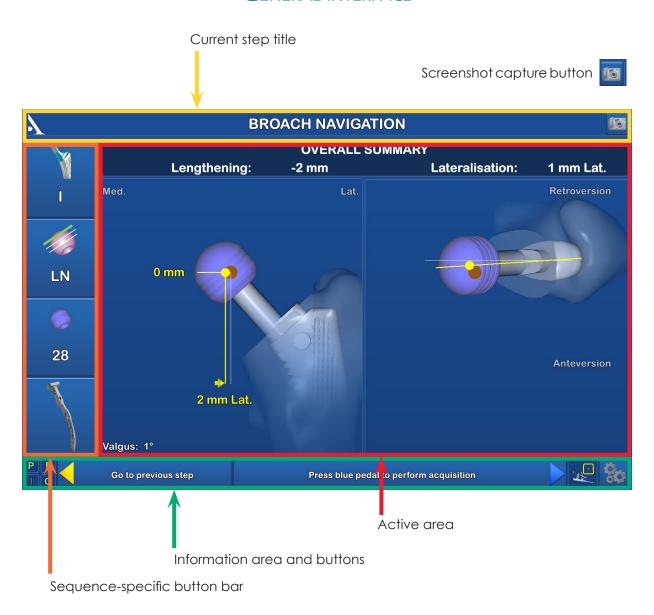
Disconnect the power cord and wind it around the power cord holder located on the back of the workstation.

Disconnect the pedal.

Set the camera head in the neutral position (maximum height, no rotation).

Clean the workstation and pedal according to the instructions in the user manual.

Lock the adjustable tower: lower the locking handle and firmly push down on it to completely lower the tower.


Put the workstation back into the shipping trunk.

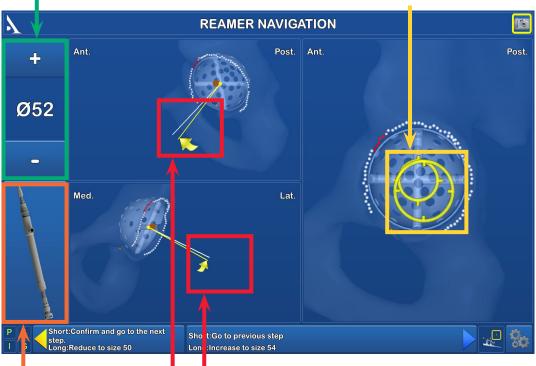
Place the pedal and covers in the shipping trunk. Lock the four latches on the shipping trunk.

APPENDIX C

SCREEN LAYOUT

GENERAL INTERFACE

42

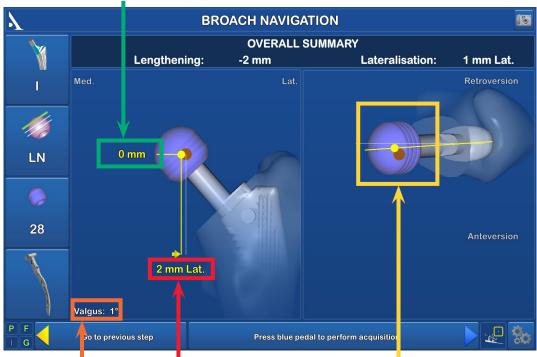

APPENDIX C

SCREEN LAYOUT

REAMER/ACETABULUM NAVIGATION

Buttons used to select reamer diameter

Reamer alignment cross-hairs relative to patient's anatomy: when the two cross-hairs are aligned and concentric, the reamer axis corresponds to the anatomical axis

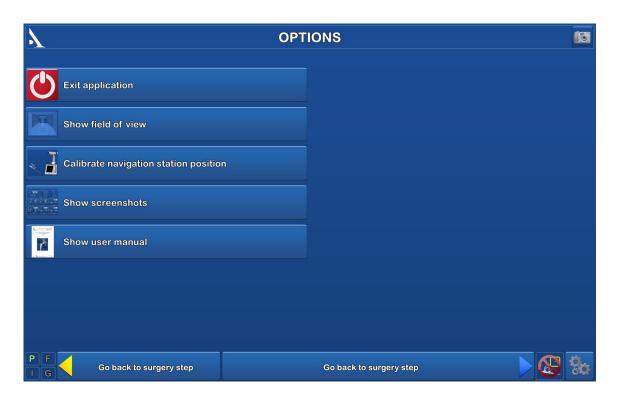


Button used to select reamer handle

Anteroposterior and mediolateral orientation of reamer holder relative to patient's anatomy (Yellow line = reamer axis; white line = anatomical axis)

Broach/Stem Navigation

Lengthening or shortening relative to centre of femoral head



Varus or valgus of broach Lateralisation or medialisation relative to broach reference of joint centre relative to patient's anatomy

Anteversion or retroversion of broach relative to patient's anatomy

APPENDIX D

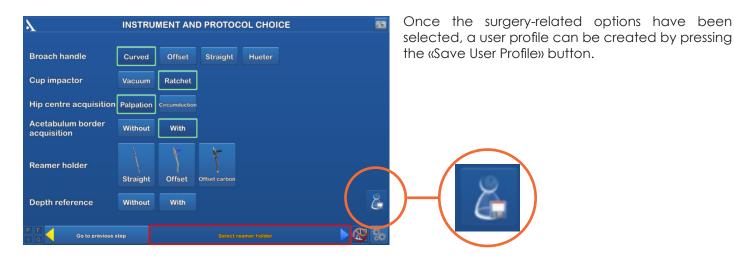
OPTIONS MENU

Exits the application. This button is also visible during the final navigation step.

Shows camera field of view to locate arrays.

Reset workstation position relative to surgeon position

Shows screen captures for validated steps and those captured manually.



Shows the user manual.

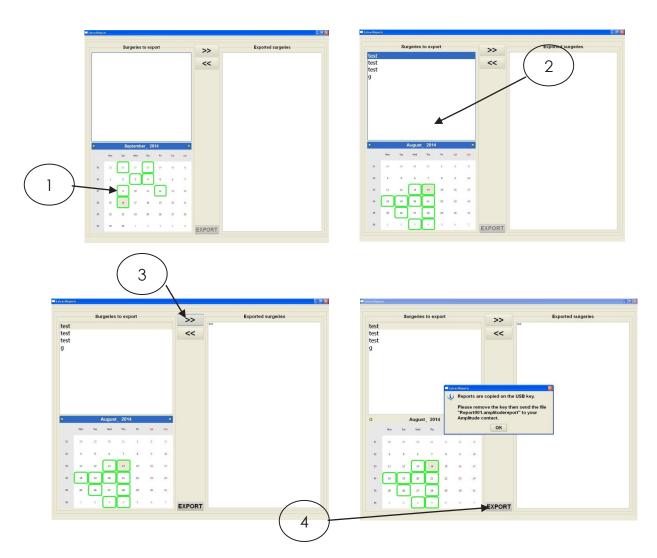
APPENDIX E

USER PROFILE

The following information will be saved to a USB drive:

- Name of surgeon
- Broach handle
- Type of impactor for SATURNE® and HORIZON® II with holes cup
- Method used to acquire hip centre
- Option to acquire the acetabular rim
- Method used to acquire anatomical axis
- Type of reamer holder used
- Depth reference option

Working with user profiles:


For future surgical procedures with navigation, plug in the USB drive to automatically load the surgeon's name and preferences.

At this point, the software will go from the «Information» page to the «Camera Setup» page and will skip the «Surgery-related options» page.

APPENDIX F

OPENING A SAVED SURGERY REPORT

If a saved surgery report is not transferred to a USB drive, it can still be retrieved at a later date.

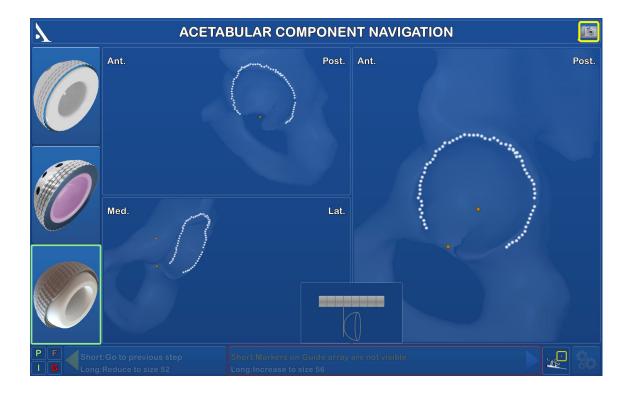
Turn on the AMPLIVISION® workstation.

When the AMPLIVISION® welcome screen appears, press the button on the lower right of the screen.

The message «Do you want to extract patient data?» will appear. Press «OK».

A calendar will appear. The dates on which surgery reports were saved will be highlighted in green. Select the dates corresponding to the procedure(s)

(1). For each date, AMPLIVISION® lists available reports in the «Surgeries to export» window (2).


Use the touch screen to select the reports to be exported and then press the button to move them to the «Exported surgeries» window (3).

Insert the USB drive and press the button to copy these reports to it (4). A message will appear when the operation is complete.

To ensure confidentiality, the exported reports are saved in an encrypted file format, «Report001.amplitudereport» on the USB drive. Contact AMPLITUDE to obtain access to the desired report.

APPENDIX G

CHANGING THE CUP MODEL

If needed, the type of implant can be changed during the procedure.

Select the image that corresponds to the current implant in the upper-left corner of the screen.

The available cups will be shown on the screen; select the desired cup and confirm.

NOTE

If changing from a HORIZON® II or EQUATEUR® cup to a SATURNE® cup, the software will ask you to calibrate the impactor again.

If the incorrect implant is selected or the impactor is not available, press the yellow pedal while at the impactor calibration screen to get back to the acetabular cup navigation screen.

INSTRUMENTATION

In addition to the stem and cup instrumentation, the following are required:

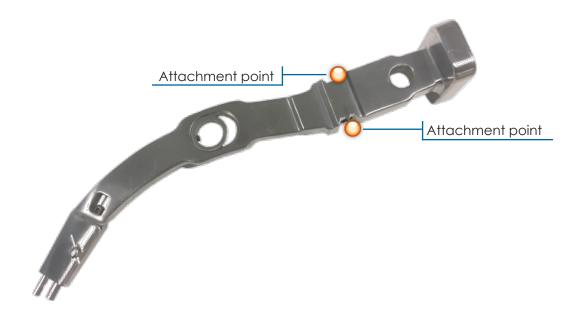
- > AMPLIVISION® Navigation Station,
- > Sterile, single-use AMPLIVISION® markers (14 per pack) (Product No. 3-0400902),
- > AMPLIVISION® Hip Navigation Instrumentation (Product No. 2-0199945). If using the INTEGRALE®, LOGIC® or GENERIC® stem, order stem instrumentation (2-0199957) and the accompanying set (2-0199945).

Sterile markers:

The arrays must be equipped with markers to be visible to the camera. These markers are attached through the nipples on the arrays (3 for the F, I and G arrays; 4 for the probe)

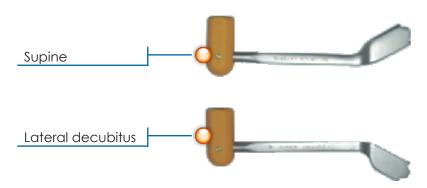

Single-use AMPLIVISION® pins:

Single-use, Ø4 diameter, 150-mm long conical pins are available in packs of 4 (Product No. 2-0252200). These pins will be inserted into the femur and iliac crest; the array supports will be mounted on the inserted pins.



OTHER NAVIGATION INSTRUMENTS (NOT IMPLANT SPECIFIC)

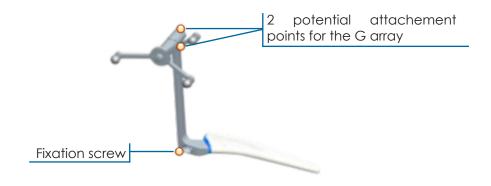
> <u>Probe:</u> This instrument is used to acquire specific points and areas on the patient's anatomical structures. It is also used to remotely control certain active elements on the screen. The probe must be fitted with four markers, one of them being on the trigger.



> <u>Broach handle:</u> Each broach handle for navigation procedures has two attachment points for the G array (one on each side). The array can only be assembled in one direction into each attachment point.

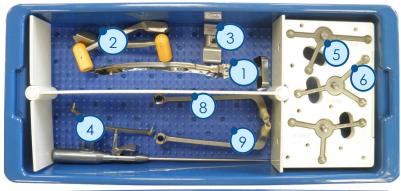
OTHER NAVIGATION INSTRUMENTS (NOT IMPLANT SPECIFIC)

> G supports for navigation of monoblock: These instruments are used during navigation of the implanted stem. The G support is clipped on the Morse taper of the inserted stem. One version is used when the patient is in lateral decubitus position and the other version is used when the patient is supine. The G array is positioned differently to ensure its visibility.



> <u>G supports for navigation of modular stem:</u> There are 2 versions:

- One version when the anterior approach is used to operate on the left leg; this support is also used when the posterior approach is used to operate on a right leg. The instrument has the following markings: Ant. G / Post D.
- One when the anterior approach is used to operate on the right leg; it is also used when the posterior approach is used to operate on a left leg. The instrument has the following markings: Ant. D / Post. G.


These instruments are used during navigation of the implanted stem. Its oblong-shaped tip is placed in the elongated hole on the implanted stem and screwed using the round tip mounted on the universal handle.

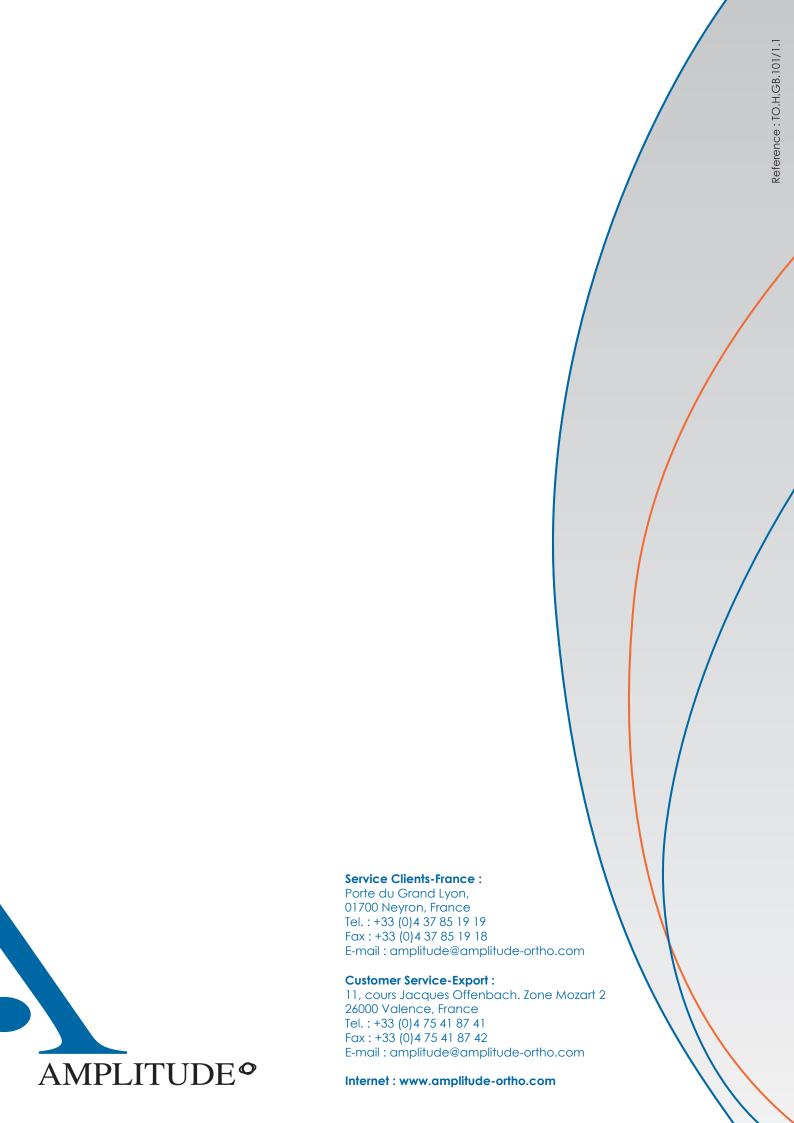
The G array can be placed on either side of the support. Choose the side where the array will be most visible to the camera based on which side is being operated on and the surgical approach.

HIP NAVIGATION SET

2-0199945

Rep	Description	Reference	Qty
1	Curved broach handle – navigation	2-0117803	1
2	G array support for stem navigation – lateral and <u>supine</u> position	2-0117 700 and 2-0117 <u>701</u>	1 each
3	CR support – measurement of reamer axis	2-0116600	1
4	Probe for hip navigation	2-0116800	1
5	I array, Iliac crest navigation	2-0117300	1
6	G array, Instrumentation navigation	2-0117500	1
7	F array, femur navigation	2-0117400	1
8	G array support for navigation – modular stem Ant. R. / Post. L.	2-0193401	1
9	G array support for navigation – modular stem Ant. L. / Post. R.	2-0193402	1
10	H5 Screwdriver	2-0200800	1
11	Cup impactor body	2-0190700	1
12	Straight reamer holder – navigation	2-0118000	1
13	Conical Threaded Pins AMPLIVISION Ø4 length 150mm	2-0235500	4
14	Conical Threaded Pins AMPLIVISION Ø4 length 100mm	2-0235900	4
15	Acetabular Reamer D42 to D64	2-01929 42 to 2-01929 64	1 each
16	Straight and inclined fixation system, navigation geometry	2-0117 100 and 2-0117 <u>200</u>	2 each
17	Universal quick release adaptor for pin	2-0201100	1
17	AO quick release adaptor for pin	2-0201200	1

NOTES



NOTES

